BIOL 3083 — PRINCIPLES OF ECOLOGY

Instructor:	TBA
Affiliation:	CUNY Graduate Center, Ecology, Evolutionary Biology, and Behavior (EEB) PhD subprogram <i>and</i> Brooklyn College, Department of Biology
Office hours:	TBA
Contact:	TBA
Meeting times:	TBA Tuesdays and Thursdays from 2:15pm to 3:30pm.
Late policy:	Students may leave class if I have not arrived after 15 minutes since the meeting hours started.
Description:	3 hrs; 3 credits. Introduction to the principles of ecology; biology of populations, communities, and ecosystems; basic issues of biodiversity.
Prerequisites:	Biology 1001 and 1002; or permission of the instructor
Goals:	Students will learn the relationships between organisms and their biotic and abiotic environments; the course includes physiological, population, and community ecology. By the end of the course, students will be able to: describe the key components of natural selection; explain how natural selection has contributed to evolution and diversity of life forms; demonstrate familiarity with evolutionary mechanisms; describe major biotic and abiotic factors that determine the distribution of plants and animals; demonstrate an understanding of population genetics and demography; define the major types of intraspecific and interspecific interactions; demonstrate an understanding of community structure and dynamics.
Touthooly Foolo	ath Edition (2017) has Desumen Healton and Cain ISDN

Textbook: *Ecology*, 4th Edition (2017) by Bowman, Hacker, and Cain ISBN 978-1-60535-618-1

Note: Students do not have to use the suggested textbook, but they do need to familiarize themselves with the topics covered in the course. A complete list of topics is listed at the end of the syllabus.

Other materials:	Slides	will be made available electronically by the instructor.	
Evaluation:	Final grades for this course will be determined by three exams and coursework:		
	 W M Fin Co 	arm-up exam (10%) idterm exam (20%) nal exam (40%) oursework (30%)	
Assessment:	Exams are graded on a curve and will only include topics covered in class.		
Grading scale:	А	90% and above	
	A-	89, 88, 87	
	B+	86, 85, 84	
	В	83, 82, 81, 80	
	B-	79, 78, 77	
	C+	76, 75, 74	
	С	73, 72, 71, 70	
	C-	69, 68, 67	
	D	66 and below	

Cheating policy: Cheating will result in a FAIL.

Non-discrimination policy:	The instructor has a ZERO TOLERENCE policy and will not accept discrimination based on race, color, national or ethnic origin, age, religion, disability, veteran status, sex, sexual orientation, and gender identity and expression. All members of the class will be treated with RESPECT—this is non-negotiable and will be strictly enforced.
Academic integrity policy:	The faculty and administration of Brooklyn College support an environment free from cheating and plagiarism. Each student is responsible for being aware of what constitutes cheating and plagiarism and for avoiding both. The complete text of the CUNY Academic Integrity Policy and the Brooklyn College procedure for policy implementation can be found at <u>www.brooklyn.cuny.edu/bc/policies</u> . If a faculty member suspects a violation of academic integrity and, upon investigation, confirms that violation, or if the student admits the violation, the faculty member MUST report the violation. <i>Students should be aware that</i> <i>faculty may use plagiarism detection software</i> .
Disability services policy:	The Center for Student Disability Services (CSDS) will be working remotely for the fall semester. In order to receive disability-related academic accommodations students must first be registered with CSDS. Students who have a documented disability or suspect they may have a disability are invited to schedule an interview by calling (718) 951-5538 or emailing testingcsds@brooklyn.cuny.edu. If you have already registered with CSDS, email Josephine.Patterson@brooklyn.cuny.edu or testingcsds@brooklyn.cuny.edu to ensure the accommodation email is sent to your professor.

Student bereavement policy: see

http://www.brooklyn.cuny.edu/web/about/initiat ives/policies/bereavement.php

Religious non-attendance:	State law regarding non-attendance because of
	religious beliefs is noted in the front matter of
	the Undergraduate Bulletin and Graduate
	Bulletin, see
	http://www.brooklyn.cuny.edu/web/about/admi
	nistration/enrollment/registrar/bulletins.php

Exam dates:

TBA

Course schedule:				
	General topic	Date	Textbook / paper readings	
Week 1:	Welcome			
	Intro to ecology	Chapter	1, Pages 2 to 21	
Week 2:	Natural selection			
	Natural selection	Chapter (6, Pages 136 to 159	
Week 3:	Life histories	Chapter '	7, Pages 160 to 181	
	WARM-UP EXAM			
Week 4:	Biogeography	Chapter 2	2, Pages 22 to 49	
		Chapter 4	4, Pages 84 to 108	
	Discussion session 1	Whose co	onservation?	
Week 5:	Biogeography	Chapter	18, Pages 399 to 423	
	The Biosphere	Chapter 3	3, Pages 50 to 83	
Week 6:	The Biosphere			
	Discussion session 2	Decoloni	zing ecology	
Week 7:	Populations and life tables Populations and life tables	Chapters	9 & 10, Pages 204 to 248	
Week 8:	Populations and life tables			
	Discussion session 3	"Natural	," maps and power	
Week 9:	Revision session			
	MIDTERM EXAM			
Week 10:	Office hours SPRING BREAK Population dynamics			
Week 11:	Population dynamics Interactions	Chapter	11, Pages 249 to 271	
Week 12:	Discussion session 4	Science of	communication	
	Interactions	Chapters	12–15, Pages 272 to 355	
Week 13:	Communities			
	Communities	Chapters	16 & 17, Pages 356 to 398	

Week 14:	Discussion session 5	Social sciences and ecology
	Revision session	
Week 15	FINAL EXAM	TBA

Topics in Principles of Ecology:

- Introduction Definition of ecology Difference between biotic and abiotic factors
 - Organization of ecology (individuals to the biosphere)
 - Ecological maxims
 - The importance of scale in ecology
 - Controlled experiments
 - The scientific method
- Natural selection

 The relationship between evolution and ecology
 Heritability
 - Basic genetics (genes, alleles, genotypes, phenotypes)

 Hardy-Weinberg equilibrium
 - Descent with modification and natural selection
 - How populations diverge
 - Mechanisms of evolution (mutation, natural selection, genetic drift, gene flow)
 - Adaptive evolution
 - Spatial variation of traits of individuals of a species (clines)
 Temporal variation of traits of individuals of a species
 Co-evolution of interacting species
 - Limits to perfect adaptation (gene flow, environmental change, lack of genetic variation, evolutionary history, ecological trade-offs)
 - Speciation (genetic divergence, genetic drift, hybridization)
 Evolutionary trees
 Extinction and speciation
 Adaptive radiation
- Life histories

 Life history strategies
 Genetic control
 Environmental control
 - Reproduction (asexual versus sexual, semelparous versus iteroparous, r-selected versus K-selected species)
 - Plant classifications (competition versus disturbance tolerance versus stress tolerance)
 - Dimensionless ratios

- Life-history trade-offs (survival versus reproduction, growth versus reproduction, current versus future reproduction, quality versus quantity of offspring)
- Complex life cycles Evolution of life-histories
- Biogeography \circ Climate versus weather
 - Climate and species distributions
 - Climate averages versus climate extremes
 - Atmospheric circulation patterns
 - Hadley cell
 - Polar cell
 - o Ferrell cell
 - Climate zones and effects on abiotic features and seasonality o
 Prevailing winds o Coriolis effect o Seasonal climate variation o
 Long-term climate variation (e.g., El Nino Southern Oscillation) o
 Chemical environment (salinity, acidity, oxygen concentrations) o
 Physiological ecology
 - Impacts of environment on ecological success Climate envelopes
 - Geographic ranges (potential versus actual)

 Stress and coping with the environment (tolerate versus avoid)
 Temperature and survival (unicellular organisms, plants, animals)
 Ectotherms versus endotherms
 Evolution of endothermy
 Solvents and solutes
 Salt and water
 - Water balance (microorganisms, plants, animals)

 Definition of biogeography
 - Common biogeographic patterns (local, regional, and global scales)
 Measures of diversity (alpha, beta, gamma)
 Local versus regional species richness
 - Biogeographic regions (Nearctic, Neotropical, Palearctic, Ethiopian, Oriental, Australasian)

 Continent formation

and evolutionary isolation \circ Species-area relationships

- o Island biogeography and species richness patterns
- The Biosphere \circ Defining terrestrial biomes according to plant life
 - Nine terrestrial biomes (tropical rainforest, tropical seasonal forest and savanna, desert, temperate grassland, temperate shrubland and

woodland, temperate deciduous forest, temperate evergreen forest, boreal forest, tundra)

• Mountains as analogous biomes • Freshwater biological zones

Lotic (flowing water) versus lentic (still water) systems

Marine biological zones

Nearshore zones

Shallow ocean zones

Open ocean

- - Spatial arrangement of individuals within a population (clumped, regular, random)
 - Ecological niche (fundamental versus realized)
 - Estimating population abundance (area-based counts, distance methods, mark-recapture)
 - Life tables (how survival and reproductive rates vary with the age of an organism)
 - Cohort life tables versus static life tables o Survivorship curves (Type I, Type II, Type III) o Age classes and age structure
 - Matrix representation of fecundity and survivorship

 Stable age distributions
- Growth and regulation

 Population growth rates

 Condition for population decline
 - Geometric growth
 - Discrete reproductive periods versus continuous breeding o
 Exponential growth o Doubling times o Density-independent factors affecting population growth o Density-dependent factors affecting population growth o Allee effect
 - Logistic growth and carrying capacity
 - Beverton-Holt equation (discrete-time equivalent of logistic growth) Human population growth and the human carrying capacity
- Population dynamics \circ Births, deaths, immigration,

and emigration

 Patterns of population growth in real systems (exponential growth, logistic growth, population fluctuations, population cycles) Population cycles, delayed density dependence, over-compensatory dynamics, and the Ricker equation Stochastic growth rates

0 0

- Small populations and extinction (genetic factors, demographic factors, environmental factors)
- Metapopulations
- Interactions \circ Predation and trophic interactions

(carnivory, herbivory, parasitism) o Parasitoids

- Diet preferences, specialists, generalists, encounter rate, and handling time
- Predator and prey adaptations to trophic interactions
- Plant-herbivore interactions, overcoming plant defense mechanisms, and co-evolution
- Competition (intraspecific and interspecific)

 Interspecific competition and ecological niche
 Types of competition (exploitative, interference, allelopathy)
 Limiting resources, competition, and population growth
- o Asymmetrical competition and amensalism
- Overlapping requirements, resource partitioning, and the outcomes of competition (competitive exclusion, competitive coexistence)
- Competition and evolution (natural selection and character displacement)
- Intraspecific and interspecific competition and the Lotka-Volterra competition model
- Isocline combinations, competitive exclusion, and the coexistence requirement
- Communities

 Defining communities based on abiotic and biotic features of an environment
 - Whole communities and reasons for considering subsets (practicalities, guilds, functional groups)

 Food webs and interaction webs
 Community structure (species diversity, species composition)
 Species richness, species evenness, and the Shannon index

- Species diversity versus biodiversity
- Rank abundance curves Species accumulation curves
- Direct and indirect interactions and trophic cascades Trophic facilitation
- Competitive networks and species coexistence
- Types of species (foundation species, keystone species, ecosystem engineers)
- Measuring interaction strength
- Communities and change (abiotic and biotic agents of change, stresses versus disturbances)
- Succession (primary and secondary succession, pioneer and climax stages)
- Three models for succession (facilitation model, tolerance model, inhibition model)
- Alternative stable states, stability, hysteresis, and regime shifts